

Achieve better productivity and longer tool life with our new line of high feed solid carbide endmills!

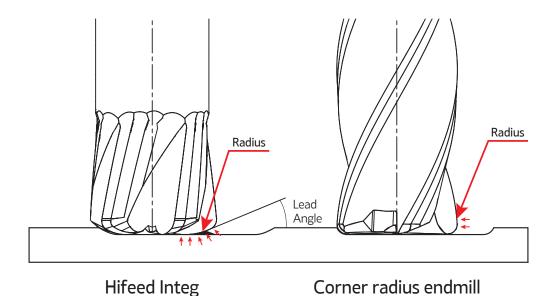
This innovative curved profile of the cutting edge along with low lead angle allow to:

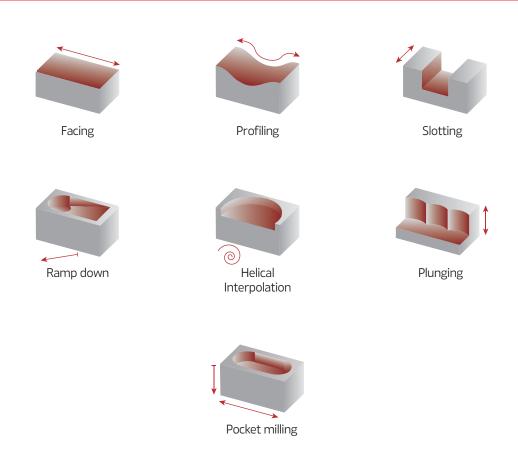
- Cause a chip thinning effect and thus to achieve aggressive feed rates.
- Reduce the axial loads on the endmill and consequently tool deflection and vibration, leading to more stability.

These combined improvements allow to achieve tool life up to 30% higher when compared to typical solid carbide endmills when processing hardened materials.

High feed endmills are the first choice for:

- 1. High material removal rate
- 3. Versatility to machine deep or shallow parts
- 2. Machining in unstable conditions
- **4.** Plunge milling machine methods

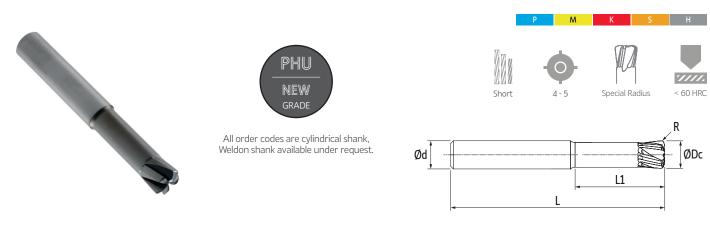



HIFEED-INTEG = High Feed endmills

HXR30HFGS Special radius roughing endmill

Thanks to the small lead angle and large part radius of the high feed endmill it is possible to minimise tool deflection, once the cutting force is transferred axially against the spindle, minimising radial forces. Benefiting the machining of thin walls or contouring deep pockets.

OPERATIONS



HXR30HFGS Special radius roughing endmill

⁽²⁾ Grade code			2A	Dimensions Dimensões Dimensiones (mm)						
(1) Geometry code	Reference Referência Referencia		PHU910	ØDc	Ød (h6)	Dimensions D	limensões Dim	R2*		L
1181449	HXR30HFGS 4 030 002 XR020	4	(a)	3	6	0,20	0,20	0,40	9	63
1181450	HXR30HFGS 4 040 003 XR030	4	@	4	6	0,30	0,30	0,50	12	63
1181451	HXR30HFGS 4 050 003 XR040	4		5	6	0,30	0,40	0,60	15	63
1181452	HXR30HFGS 4 060 004 XR050	4	@	6	6	0,40	0,50	0,80	24	63
1181453	HXR30HFGS 5 080 004 XR060	5	(a)	8	8	0,40	0,60	0,90	32	75
1181430	HXR30HFGS 5 100 005 XR080	5	(a)	10	10	0,50	0,80	1,20	32	75
1181454	HXR30HFGS 5 120 005 XR100	5	(a)	12	12	0,50	1,00	1,40	36	83

Stock item | Produto de stock | Itens de stock

RECOMMENDED CUTTING CONDITIONS | Condições de corte recomendadas | Condiciones de corte recomendadas

ISO	Workpiece Material		f _z (mm/t)		v _C (m/min)			Plunging	
ISO		a _e = 25%	a _e = 50%	a _e = 100%	a _e = 25%	ae = 50%	a _e = 100%	fz (mm/t)	v _C (m/min)
	Unalloyed Steel	0,044 x ØDc	0,038 x ØDc	0,023 x ØDc	300	280	270	0,004 x ØDc	160
Р	Low-Alloyed Steel	0,044 x ØDc	0,038 x ØDc	0,023 x ØDc	280	250	230	0,004 x ØDc	140
	High-Alloyed Steel	0,040 x ØDc	0,036 x ØDc	0,020 x ØDc	200	180	150	0,004 x ØDc	120
	Stainless Steel (Ferritic / Martensitic)	0,035 x ØDc	0,035 x ØDc	0,018 x ØDc	180	160	150	0,003 x ØDc	110
M	Stainless Steel (Austenitic)	0,035 x ØDc	0,033 x ØDc	0,018 x ØDc	120	110	100	0,003 x ØDc	100
	Stainless Steel (Austenitic/Ferritic/Duplex)	0,033 x ØDc	0,031 x ØDc	0,018 x ØDc	80	70	60	0,003 x ØDc	60
	Malleable Cast Iron	0,034 x ØDc	0,032 x ØDc	0,021 x ØDc	170	150	130	0,003 x ØDc	110
K	Grey Cast Iron	0,035 x ØDc	0,035 x ØDc	0,021 x ØDc	220	200	180	0,003 x ØDc	120
	Nodular Cast Iron	0,034 x ØDc	0,032 x ØDc	0,021 x ØDc	160	140	120	0,003 x ØDc	110
S	Heat Resistant Super Alloys	0,022 x ØDc	0,017 x ØDc	0,014 x ØDc	40	35	30	0,002 x ØDc	30
Н	Hardened Steels	0,026 x ØDc	0,021 x ØDc	0,014 x ØDc	90	85	70	0,002 x ØDc	70

Note: Plunge Depth = $2 \times \emptyset Dc$ A_e Stepover = 0,2 x \emptyset Dc

Available under request | Disponível sobre consulta | Disponible bajo consulta

Endmill order code = (1) Geometry Code + (2) Grade Code

^{*}Programming radius.

TEST REPORT

Helical Interpolation | Slotting | Pocket Milling **Operation:**

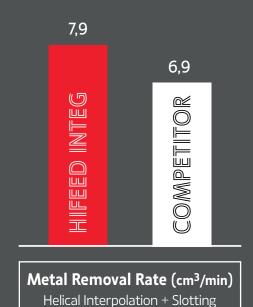
Material: 1.2738 | 34-36 HRC

Tool: HXR30HFGS 5 080 004 XR060

Ø8 mm **Diameter:**

PHU910 Grade:

Rate


Workpiece Material: Mould Steel

Operations	Helical Interpolation	Slotting	Pocket Milling
Cutting speed: v _C	150 m/min	130 m/min	150 m/min
Feed per tooth: f _z	0,3 mm/t	0,3 mm/t	0,3 mm/t
Depth of cut: ap	0,3 mm	0,3 mm	0,3 mm
Width of Cut : ae	-	100%	60%
Coolant	Air	Air	Air

Operations were performed with a single HIFEED endmill and compared with a competitor's endmill of the same diameter and under the same cutting conditions. The HXR endmill has 5 flutes while the competitor's endmill has 4.

HXR endmill wear after 35min of helical interpolation and slotting + 70min of interrupted cutting in pocket milling

The competitor's endmill broke during slotting after 39 minutes of machining

HIFEED-INTEG

HEADQUARTERS

PALBIT. S.A.

P.O.Box 4 - Palhal 3854-908 - Branca ALB - Portugal T (+351) 234 540 300 | F (+351) 234 540 301 palbit@palbit.pt | www.palbit.pt

Branch office:

PALBIT México Emerson 150. Int.803-804. Colonia Chapultepec Morales Delagación Miguel Hidalgo C.P. 11570 México DF T (+52) 5555 454 543 | F (+52) 5552 509 190 info@palbit.com.mx | www.palbit.com.mx

